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Anisotropic Scattering in Accordance
with Pomraning Phase Function
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The emergent intensity I (0, µ) from the equation of transfer in anisotropically scattering
medium with Pomraning phase function is derived in nth approximation by using
Chandrasekhar’s discrete ordinate method.
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1. INTRODUCTION

Pomraning (1998) introduced a new phase function where the radiation is
scattered according to the Rayleigh like phase function. Viik (2001) used it to
derive the intensities in a homogeneous plane-parallel optically semi-infinite at-
mosphere where there are sources of radiation infinitely deep in the atmosphere
and where the radiation is scattered according to the Rayleigh like Pomranning
phase function. He considered the accuracy of the phase function on the basis of
the Milne problem in a homogeneous plane parallel atmosphere by solving the
vector transfer equation using the Chandrasekhar’s discrete ordinate method and
the respective scalar equations by using Chandrasehar-Ivanov principles of invari-
ance to reduce the boundary value problem into a Cauchy initial-value problem.
By using the same phase function, Viik and McCormick (2002) performed ap-
proximate polarized Rayleigh transfer calculations with a scalar radiative transfer
equation.

Ghosh, Mukherjee and Karanjai (2004) studied some approximate form of
H-function already studied by Karanjai (1968) and Karanjai and Sen (1971) to
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the case of anisotropically scattering atmosphere with Pomraning Phase function.
Islam, Mukherjee, and Karanjai (2004) solved the equation of radiative transfer
with Pomraning Phase function and a non-linear source in a plane semi-infinite at-
mosphere with axial symmetry by Laplace Transform and Wiener-Hopf technique.
They determined the emergent intensity in terms of Chandrasekhar’s H-function
and the intensity at any optical depth by inversion.

We have used this phase function here to derive the emergent intensity in nth

approximation by using the Chandrasekhar’s discrete ordinate method.

2. THE RADIATIVE TRANSFER EQUATION AND THE BOUNDARY
CONDITIONS

2.1. The Radiative Transfer Equation

The equation of radiative transfer appropriate for the problem is

µ
dI (τ, µ)

dτ
= I (τ, µ) − 1

2
�0

∫ +1

−1
p(µ,µ′)I (τ, µ′ )dµ′ (1)

where I is the intensity, τ the optical depth measured from the upper boundary
of the atmosphere, µ, the cosine of the angle between the direction of travel of
a photon and the outward normal drawn at the surface of its incidence, �0 is the
albedo of single scattering and p (µ,µ′ ) is the Pomraning Phase function (Viik,
2001; Pomraning, 1998), given by

p (µ,µ′ ) = 1 + λ

2
P2(µ)P2(µ′ ) = 1 + λ

8
(3µ2 − 1)(3µ′ 2 − 1)

i.e. p (µ,µ′ ) = 1 + λ

8
(9µ2µ′ 2 − 3µ′ 2 − 3µ2 + 1); (2)

where P2(µ) is the Legendre Polynomial of second order and λ is a constant given
by

λ = 5

5 − 3�0
(3)

Using the Eq. (2), the Eq. (1) can be put in the form:

µ
dI (τ, µ)

dτ
=I (τ, µ)− 1

2
�0

∫ +1

−1

{
1+ λ

8
(9µ2µ′ 2−3µ′ 2−3µ2−1)

}
I (τ, µ′ )dµ′

(4)
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2.2. Boundary Conditions for solving the Transfer Equation

The equation of transfer (4) is to be solved subject to the boundary conditions:

(i)

I (0, µ) = 0 for − 1 < µ ≤ 0 (5)

(ii)

I (τ, µ)e−τ → 0 as τ → ∞ (6)

3. SOLUTION OF THE EQUATION

3.1. Solution of the Equation in nth Approximation

Now, following Chandrasekhar (1960), we form the following set of discrete
equations:

µi

dIi

dτ
= Ii − 1

2
�0

∑
j

{
1 + λ

8

(
9µ2

i µ
2
j − 3µ2

j − 3µ2
i + 1

)}
Ijaj ;

i = ±1,±2, . . . ,±n

(7)

where j runs from −n to +n except the point j = 0, µ−i = −µi , a−j = aj

and Ii = I (τ, µi).
Now the system of 2n Eq. (7) admits integrals of the form

Ii = gie
−kτ (8)

Then

(1 + µik)gi = �0

16

∑
j

{(
(8 + λ) − 3λµ2

j

) + 3λ(3µ2
j − 1)µ2

i

}
ajgj (9)

⇒ gi = �0
ρ + ρ1µ

2
i

1 + µik
, (10)

where ρ and ρ1 are constants ( independent of i).
Applying the Eq. (10) in the Eq. (9), we get

16ρ + 16ρ1µ
2
i = {(8 + λ)ρ�0D0(k) + (−3ρλ�0 + (8 + λ)ρ1�0)D2(k)

− 3ρ1λ�0D4 (k)} + {−3ρλ�0D0(k) + (−3ρ1λ�0

+ 9ρλ�0)D2(k) + 9ρ1λ�0D4(k)}µ2
i (11)
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where

D�(x) =
∑

j

aj µ�
j

1 + µj x
(12)

which produces the following two equations:

(16 − (8 + λ)�0D0 + 3λ�0D2)ρ − ((8 + λ)�0D2 − 3λ�0D4)ρ1 = 0 (13a)

and

(−9λ�0D2 + 3λ�0D0)ρ + (16 + 3λ�0D2 − 9λ�0D4)ρ1 = 0 (13b)

which, on elimination of ρ and ρ1, will give

32 + 12λ�0D2 − 18λ�0D4 − 2(8 + λ)�0D0 − 9λ� 2
0

(
D2

2 − D0D4
) = 0

So, by using the Eq. (36) of Appendix-A, we get

9λ(1 + �0)�0D4 − 3λ�0(2 + �0)D2 + (8 + λ)�0D0 = 16 (14)

3.1.1 Characteristic Equation

From the Eq. (14)

9λ

16
(1 + �0)�0D4 − 3λ

16
�0(2 + �0)D2 + 1

16
(8 + λ)�0D0 = 1

i.e.

�0

∑
j

aj

16(1 + µj k)

{
9λ(1 + �0)µ4

j − 3λ(2 + �0)µ2
j + (8 + α)

} = 1 (15)

which is an equation in k of order 2n, known as the characteristic equation and
will give 2n non-zero distinct roots of the form ±kα; α = 1, 2, . . . , n, if �0 < 1

3.1.2 Determination of 2n independent integrals

Now, from the first Eq. (13a)

ρ1 = 16 − (8 + λ)�0D0 + 3λ�0D2

(8 + λ)�0D2 − 3λ�0D4
ρ

Now we have

D2 = − 1

k2
(2 − D0)

and

D4 = − 2

3k2
− 1

k4
(2 − D0)
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Therefore,

ρ1 = − (48k4 − 18λ�0k
2) − {3(8 + λ)�0k

4 − 9λ�0k
2}D0

(48�0k2 − 18λ�0) − {3(8 + λ)�0k2 − 9λ�0}D0
ρ (16)

But from the Eq. (14)

D0 = 16k4 + 18λ(1 + �0)�0 − 6λ�0k
2

9λ(1 + �0)�0 − 3λ�0(2 + �0)k2 + (8 + λ)�0k4
(17)

Therefore, using the Eq. (17) in the Eq. (16), we get

ρ1 = 3λ(1 + �0){3(1 − �0) − k2}
3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2

ρ (18)

So, from the relation (10), we get

gi = �0ρ
3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2 + 3λ(1 + �0){3(1 − �0) − k2}µ2

i

[3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2](1 + µik)

and therefore, the Eq. (7) admits 2n integrals of the form:

Ii = �0ρ
3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2 + 3λ(1 + �0){3(1 − �0) − k2}µ2

i

[3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2](1 + µik)
e−kτ

(19)

and therefore, following Chandrasekhar (1960), the complete solution of the
Eq. (7) can be put into the form:

Ii = 3

4
F ×

{
n∑

λ=1

3λ{(1 + �0)2 − 2} + (8+λ)(1−�0)k2+3λ(1+�0){3(1−�0)−k2}µ2
i

[3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2](1 + µik)

}

×Lα e−kατ (i = 1, 2, . . . , n) (20)

where Lα are constants, obtainable by applying the boundary conditions (5) and
F is the flux.

4. EMERGENT INTENSITY IN CLOSED FORM

4.1. Emergent Intensities in Terms of S(µ)

Let us define the function S(µ) as follows:

S(µ) =
n∑

α=1

3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2 + 3λ(1 + �0){3(1 − �0) − k2}µ2

[3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2](1 − µ k)
Lα

(i = 1, 2, . . . , n) (21)
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Now, from the Eq. (20), we get

I (0, µi ) = 3

4
F

{
n∑

α=1

3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2 + 3λ(1 + �0){3(1 − �0) − k2}µ2
i

[3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2](1 + µik)

}
Lα

(i = 1, 2, . . . , n)

i.e.

I (0, µ) = 3

4
F

{
n∑

α=1

3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2 + 3λ(1 + �0){3(1 − �0) − k2}µ2

[3λ{(1 + �0)2 − 2} + (8 + λ)(1 − �0)k2](1 + µk)

}
Lα

(i = 1, 2, . . . , n)

i.e.

I (0, µ) = 3

4
FS(−µ) (22)

4.2. Emergent Intensities in Terms of H(µ)

We observe, from the Eq. (22) that

I (0, µi) = 3

4
FS(−µi)

and from the boundary condition (5),

I (0, µi) = 0 for − 1 < µi ≤ 0

which produces

S(µi) = 0 for − 1 < µi ≤ 0 (23)

which implies that µi’s , where i = 1 , 2 , . . . , n, are the zeros of the polynomial
S(µ).

So, the two polynomials S(µ)R(µ) and P (µ), with

P (µ) =
n∏

i=1

(µ − µi) (24)

and

R(µ) =
n∏

α=1

(1 − kαµ) (25)

have the zeros whose co-efficients of µn are 1 and (−1)n k1 × k2 . . . kn respectively.
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Therefore,

S(µ) = (−1)nk1k2 . . . kn

P (µ)

R(µ)
(26)

which can also be expressed as

S(−µ) = k1 · k2 . . . knµ1 · µ2 . . . µn · H (µ)

where

H (µ) = 1

µ1 · µ2 . . . µn

∏n
i=1(µ + µi)∏n

α=1(1 + kαµ)
(27)

Therefore, using the Eq. ( 42 ) of Appendix B,

S(−µ) =
{

(1 − �0) + 1

8
λ�0(1 + �0)

} 1
2

H (µ) (28)

Therefore, finally, using the Eq. (28), we get from the Eq. (22)

I (0, µ) = 3

4

{
(1 − �0) + 1

8
λ�0(1 + �0)

} 1
2

FH (µ) (29)

APPENDIX A: RELATION AMONG D�(x)’s

Since

D�(x) =
∑

j

aj µ�
j

1 + µj x

⇒ D�(x) = 1

x

(
2

�
ε � , odd − D�−1(x)

)
(30)

where

ε �, odd =
{

1 if � is odd
0 if � is even

(31)

But the Eq. (30) gives

D2j−1(x) = 1

x

(
2

2j − 1
− D�−1(x)

)
(32)

D2j (x) = − 1

x
D2j−1(x) (33)
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From the two relations (32) and (33), we redily deduce that

D2j−1(x) = 2

(2j − 1)x
+ 2

(2j − 3)x3
+ · · · + 2

3x2j−3
+ 1

x2j−1
{2 − D0(x)}

(j = 1, . . . , 2n) (34)

D2j (x) = − 2

(2j − 1)x2
− 2

(2j − 3)x4
− · · · − 2

3x2j−2
− 1

x2j
{2 − D0(x)}

(j = 1, . . . , 2n) (35)

which are the Eqs. (24) and (25) of Chapter-III, pp. 73 of Chandrasekhar (1960)
Now from the Eq. (35), putting j = 2 and j = 1, we get

D2(x) = − 1

x2
{2 − D0(x)}

and

D4(x) = − 2

3x2
− 1

x4
{2 − D0(x)}

i.e.

D4(x)

{
− 1

x2
{2 − D0(x)}

}
=

{
− 2

3x2
− 1

x4
{2 − D0(x)}

}
D2(x)

D2
2(x) − D0(x) · D4(x) = 2

3
× D2(x) − 2 · D4(x)

Replacing x by k in the above equations and using the notation D� for D� (k), we
get

D0D4 − D2
2 = 2D4 − 2

3
D2 (36)

APPENDIX B: RELATION BETWEEN THE ROOTS OF THE
CHARACTERISTIC EQUATION (15) AND THE ZEROS OF THE
LEGENDRE POLYNOMIAL P2n(µ):

Let p2j be the co-efficients of µ2j of the Legendre polynomial P2n (µ).
So,

P2n(µ) =
n∑

j=1

p2j µ2j (37)

Now, we consider
n∑

j=1

p2jD2j (k) =
∑

j

aj

1 + µj k

( n∑
j=1

p2j µ2j

)
= 0
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Since µi’s are zeros of the Legendre polynomial P2n(µ).
Therefore,

n∑
j=1

p2jD2j (k) = 0 (38)

The Eq. (38) is the required form of the Characteristic equation.
Now, we get

p0D0 + · · · + p2nD2n = 0

i.e.

{2λ�0 (2 + �0) − 2 (8 + λ) �0 + 16} p2nt
n + · · · + {16} p0 = 0 (39)

Therefore,

k2
1 × k2

2 . . . k2
n = (−1)n

{
(1 − �0) + 1

8
λ�0(1 + �0)

}
p2n

p0
(40)

Again, µi’s are zeros of the Legendre polynomial P2n (µ) and so,

µ2
1 × µ2

2 · · ·µ2
n = (−1)n

p0

p2n

(41)

Multiplying the Eqs. (40) and (41), we get

k1 · k2 . . . kn · µ1 · µ2 . . . µn =
{

(1 − �0) + 1

8
λ�0(1 + �0)

} 1
2

(42)
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